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Abstract. The reduced time evolution operator for the spin-boson model with a cubic bath
spectrum is expanded in terms of the spin-phonon coupling parameter. The contributions of first
and second order to the damping rate are calculated explicitly. The second-order term constitutes
a novel result and yields a rigorous criterion for the validity of various previous theories.

1. Introduction

Quantum tunnelling of localized defects between degenerate states is a ubiquitous
phenomenon in solid state physics. In many cases the defect coordinate may be reduced
to a two-state variable which accounts for the ground states in a double-well potential.
Such effective two-state systems have been observed in oxide glasses [1, 2], submicrometre
metallic wires [3, 4], amorphous metals [5] and polycrystalline metals [6], impurity ions in
various alkali halides [7, 8], and interstitial hydrogen in niobium [9].

The ground states in the left and right wells,|L〉 and |R〉, give rise to four quantum
mechanical operators; it turns out to be convenient to choose Pauli matrices

σz ≡ |L〉〈L| − |R〉〈R| σx ≡ |R〉〈L| + |L〉〈R| (1.1)

and σy = iσxσz, and the identity operatorσ0 = |L〉〈L| + |R〉〈R|. Here, the reduced
coordinateσz = ±1 describes the particle dwelling in the left or in the right well.

The dynamics of the isolated defect is described by the off-diagonal matrix element of
the Hamiltonian, defining a tunnel frequency1b. Dissipation arises from the coupling of
the defect coordinateσz to collective modes of the host solid. Quite generally, the heat bath
may be reduced to a set of harmonic oscillators with linear coupling toσz [10],

H = 1

2
h̄1bσx + 1

2
σz
∑
k

h̄λk
(
bk + b†k

)+∑
k

h̄ωkb
†
kbk (1.2)

where the bath operators obey Bose commutation relations, [bk, b
†
k′ ] = δkk′ .

For sufficiently dilute defects, the time evolution of the boson operators is not affected
by the pseudospins, and the heat bath is entirely characterized by the coupled density of
states

J (ω) = π

2

∑
k

λ2
kδ(ω − ωk). (1.3)

For tunnelling of atoms, the frequency1b is small; the quantity ¯h1b/kB does not exceed
a few Kelvin. Thus the low-energy bath excitations are most important, and the spectral
densityJ (ω) obeys a simple power law behaviour that is determined by the density of states
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k δ(ω−ωk) and the frequency dependence of the coupling energies ¯hλk. We briefly discuss

the two most relevant cases, which arise from the interaction with conduction electrons in
metals and with elastic waves; they are described by linear and cubic spectral functions,
respectively.

1.1. Ohmic damping

Low-energy electron–hole excitations in metallic materials may be replaced by effective
bosons with a linear spectral densityJ (ω) = πKω. As a particular feature, the resulting
damping function is constant at low frequency, which is the criterion for ‘ohmic’ dissipation.
The ohmic damping model describes both interstitial hydrogen impurities in metals and
tunnelling defects in metallic glasses. The effects on the impurity dynamics are governed
by a logarithmic infrared singularity, which is found in any order of perturbation theory.
Kondo performed a partial summation of singular terms in the perturbation series, and found
a power law for the dependence of the tunnel frequency on temperature,1̃0 ∝ T K [11].
Subsequently, much work was devoted to the ohmic damping model [10, 12, 13]. As a most
striking result, a cross-over from damped oscillations to overdamped motion was found; for
weak couplingK � 1, the incoherent relaxation rate decreases with rising temperature,
according to0 ∝ T 2K−1.

1.2. Phonon damping

In insulating materials, low-frequency elastic waves provide the most efficient damping
mechanism. The dispersion relationωsk = vs |k|, wheres labels transverse and longitudinal
polarization, gives rise to the quadratic Debye density of phonon states. Moreover, taking
into account the frequency dependenceλk ∝ √ωk, and subsuming the wave vectork and
the branch indexs in the labelk, we obtain the well known cubic law

J (ω) =
(
γ 2

l

v5
l

+ 2γ 2
t

v5
t

)
ω3

2πh̄%
≡ 3γ 2ω3

2πh̄%v5
. (1.4)

We have replaced the sound velocitiesvt andvl and the deformation potentialsγt andγl by
appropriate average valuesv andγ . For later convenience we rewrite the spectral density
as

J (ω) = παω3 ≡ πα̃(h̄2/k2
B)ω

3 (1.5)

where the dimension of the coupling parameterα is (frequency)−2, and that of α̃ is
(temperature)−2. (For h̄ = kB, one hasα = α̃.) In terms of the material constants,α
readsα = (3γ 2/2π2h̄%v5).

For a solid consisting ofN atoms in a volumeV , the Debye temperature2s and the
corresponding frequency cut-offkB2s/h̄ for the phonon branchs are given by the sound
velocityvskD according tokB2s = h̄vs(6π2N/V )1/3. Following [14], we define an effective
Debye temperature by the average value 3/23 = 1/23

l + 2/23
t .

This paper is restricted to tunnelling of atomic defects which are coupled to a phonon
heat bath with a cubic spectral function. There are four parameters, the tunnel frequency
1b, temperatureT , the Debye temperature2, and the coupling strength̃α. The latter may
vary from α̃ ≈ 10−5 K−2 for Li impurities in potassium chloride tõα ≈ 10−2 K−2 for
tunnelling defects in oxide glasses. The quantity ¯h1b/kB hardly exceeds 1 K, and one finds
that most real systems satisfy the condition of small tunnel frequency,

α12
b� 1. (1.6)
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This relation simplifies significantly the analysis of the perturbation series; we will refer
to it later on. The two-state approximation applies only for temperatures well below the
vibrational levels in the double-well potential. For most cases this implies that the validity
of the present model is restricted toT � 2.

There are various approaches to the dissipative dynamics of a two-state system coupled
to a phonon heat bath, using functional integral methods [10, 15], diagrammatic perturbation
theory [16], mode-coupling theory [17, 18, 19, 20], and, more recently, strong-coupling
perturbation theory for the pseudo-spin propagator matrix [22]. These works agree on the
behaviour at very low temperature, where both damping and relaxation rates are governed
by the direct or one-phonon process, resulting in weakly damped oscillations.

Discrepancies arise, however, at higher temperature, where the first-order approximation
for the perturbation series breaks down, and where multi-phonon processes contribute
significant corrections to the rate. In each of the works above cited, a different high-
temperature law has been reported (cf. the discussion in [22]). Since already for the lowest-
order correction to the direct process, i.e., for the term proportional toα̃2, there is a manifest
disagreement, a rigorous evaluation of this term would provide a proper criterion for the
validity of the cited approaches. The purpose of the present paper is to derive such a
criterion.

General aspects of the spin-phonon model have been discussed in detail by Leggettet
al in [10] which we will frequently refer to. In the present work we use a perturbation
expansion in terms of a four-dimensional propagator matrix, which was developed in [22],
yet with a different choice for the ‘unperturbed’ problem. The expansion in [22] starts from
small-polaron types of state, whereas here we use the form (1.2) and treat the linear coupling
term as a perturbation. Accordingly, both the dressed tunnel frequency and the lowest-order
damping rate obtained in [22] contain terms of any order in the coupling parameterα̃. This
implicit partial resummation of powers ofα̃ is supposed to provide a proper strong-coupling
theory; yet since it is not based on a series in terms of a well defined small parameter, its
validity is not easily assessed.

By means of a perturbation theory in terms of the phonon coupling potential, we derive
a reduced pseudo-spin propagator whose self-energy is expanded in powers of the coupling
parameterα̃. (According to (1.3) and (1.4),̃α is quadratic in the coupling energy ¯hλk.)
Then we calculate the first two terms of the series for the damping rate. The lowest-order
contribution is identical to the well known one-phonon rate [1]. The next-order correction is
a novel result; it provides a rigorous criterion for the validity of the various strong-coupling
approaches mentioned above, and it permits us to settle the question of the existence of an
incoherent regime.

2. Dynamic quantities

Time evolution of quantum mechanical operators is determined by the von Neumann
equation,σ̇α = (i/h̄)[H, σα] ≡ iLσα, whose formal integral may be written in terms of
the quantum Liouville operatorL as

σα(t) = eiL(t−t ′)σα(t ′). (2.1)

Moreover we need to define the initial state att = 0. It turns out to be convenient to
consider a particle initially localized in the left well evolving in time according to (2.1)
[10]. The corresponding statistical operator factorizes att = 0,

ρ = ρSρB. (2.2)
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Here,ρS projects on the quantum state|L〉, and the remaining factor,ρB = e−βHB/Tr(e−βHB),
describes the heat bath in thermal equilibrium, withHB =

∑
k h̄ωkb

†
kbk. The average with

respect to (2.2) is denoted by angular brackets,

〈· · ·〉 = Tr(ρ · · ·). (2.3)

Sinceρ factorizes with respect to spin and bath degrees of freedom, the trace in the
average (2.3) may be performed in two steps, accordingly. Thus the time-dependent spin
polarization

〈σα(t)〉 = 〈U(t)σα〉 (2.4)

may be written in terms of the reduced time evolution operator

U(t) = 〈eiLt 〉B (2.5)

where the subscript B indicates a partial trace over bath coordinates,〈· · ·〉B = TrB(ρB · · ·).
(The trace in (2.4) involves only spin degrees of freedom.)

As discussed in [22], the time-dependent expectation values ofσz and σx determine
the dissipative two-state dynamics entirely. According to the definition of the statistical
operator in (2.2), the time-dependent expectation value of the two-state coordinate,

P(t) = 〈σz(t)〉 (2.6)

satisfies the the initial conditionP(t = 0) = 1. In the limit of zero coupling,λk → 0, P(t)
oscillates with the tunnel frequency1b, while finite phonon coupling results in reduction
of the tunnel frequency and an exponential loss of phase coherence.

Whereas the damping ofP(t) describes the loss of phase memory, the energy dissipation
between even and odd pseudospin eigenstates is accounted for by the relaxation function

R(t) = 〈σx(t)〉. (2.7)

Sinceσx is diagonal in the energy eigenstates of the uncoupled system, forλk → 0 we
find R(t) = 0 for all times. For the coupled system, i.e. finiteλk, the functionR(t) tends
towards the equilibrium occupation. The time scale of this relaxation process gives the
energy dissipation rate.

3. Perturbation series

The Hamiltonian may be separated into spin and bath partsHS = 1
2h̄1bσx andHB, and an

interaction termH1 = 1
2h̄f σz. Accordingly the Liouville operator consists of three terms

L = LS + LB + L1, which are defined by ¯hLSA = [HS, A], etc. HereA is an arbitrary
composite operator which, in general, involves both spin and bath degrees of freedom.

Despite the formal similarity of the present perturbation theory to that of [22], the
above choice for the perturbationH1 leads to a basically different series expansion which,
in turn, requires approximations unlike those of [22]. This becomes obvious when noting
the equation of motion,

σ̇x = −f σy σ̇y = f σx −1bσz σ̇z = 1bσy (3.1)

where we have defined the phonon coupling potential

f =∑k λk(bk + b†k). (3.2)

In contrast to the present case, both the perturbation potentialH1 and the equation of motion
in [22] depend exponentially on the coupling constantsλk.
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The perturbation series forU(t) in terms ofλ2
k is set up by puttingL0 = LS + LB,

expanding the time evolution operator in powers ofL1,

eiLt = eiL0t + i
∫ t

0
dτ eiL0(t−τ)L1 eiL0τ (3.3)

+ i2
∫ t

0
dτ
∫ τ

0
dτ ′ eiL0(t−τ)L1 eiL0(τ−τ ′)L1 eiL0τ

′ + · · ·

and performing the partial trace over bath coordinates. By definition, the unperturbed time
evolution factorizes into spin and bath parts,

eiL0t = eiLSt eiLBt . (3.4)

Following [22], we represent each factor in the series (3.3) as a 4× 4 matrix on the
space spanned by the identity operatorσ0 and the three Pauli matricesσx , σy , σz. While
LS andLB act on either spin or bath degrees of freedom, the interaction partL1 is defined
as the commutator of a composite operator,1

2σzf , with the operator to its right.
We start with the left-hand side of (3.3). After performing the bath average, we define

the matrix

Uij (t) = 1
2 Tr(σiU(t)σj ) (3.5)

with i, j = 0, x, y, z. (We need to retain the elementσ0 in order to obtain a closed algebra
with respect to multiplication.) Regarding the right-hand side of (3.3), we first consider the
spin factor of the unperturbed time evolution (3.4),

Ŭij (t) = 1
2 Tr(σi eiLSt σj ). (3.6)

Since it does not involve bath degrees of freedom, it is easily integrated; in the matrix
notation defined above it reads

Ŭ(t) =


1 0 0 0
0 1 0 0
0 0 cos(1bt) − sin(1bt)

0 0 sin(1bt) cos(1bt)

 . (3.7)

The bath part of (3.3) results in the usual time evolution of Bose operators

b
†
k(t) = eiωktb

†
k bk(t) = e−iωktbk. (3.8)

Involving composite operators, the matrix representation of the factorsL1 in (3.3) proves
to be more complicated. The spin parts develop according to (3.6) and bath parts according
to (3.8). Yet each factorL1, acting as a commutator with the whole object to its right, gives
rise to a subtlety with respect to the time ordering of the bath operators.

This becomes obvious when evaluating the action ofL1 on a composite operatorσiB,
whereB depends on the bath operatorsbk andb†k and may include a time-dependent phase
factor. With [σi, B] = 0 and the well known algebra of Pauli matrices we define operators
Fi through

L1σiB = σzσiFiB (3.9)

where, withi = 0, x, y, z, the action ofFi on the bath operatorB is given either by the
commutator or the anticommutator with the elastic strainf ,

F0B = FzB = 1
2(fB − Bf ) (3.10)

FxB = FyB = 1
2(fB + Bf ). (3.11)



5548 A Würger

Equations (3.9)–(3.11) are just a special case of a more general commutation relation
for composite operatorsAiBi with [Ai, Bj ] = 0, namely [23]

[A1B1, A2B2] = 1
2[A1, A2]{B1, B2} + 1

2{A1, A2}[B1, B2] (3.12)

where square brackets denote the commutator, and curly brackets the anticommutator.
PuttingA1 = σz, B1 = f , A2 = σi , andB2 = B, one easily recovers (3.9). Accordingly,
the perturbation theory can be written in terms of correlation operatorsAC. = {A, .} and
response operatorsAR. = [A, .]. In [22] a more explicit use of the form (3.12) turned out
to be necessary, because of the more complicated perturbation chosen there.

According to (3.9), the algebra of Pauli matrices determines the action ofL1 on the
spin degrees of freedom. With

3ij = 1
2 Tr(σiσzσj ) (3.13)

we calculate the matrix representation for the operatorσz,

Λ =


0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0

 . (3.14)

The action on the bath degrees of freedom is accounted for by multiplying3ij by Fj ; with
(3.9) and (3.13) we have

1
2 TrS(σiL1σj ) = 3ijFj . (3.15)

Now we are ready to insert the matrices (3.7) and (3.15) in the series (3.3). After
taking the thermal average with respect to the bath we obtain a series for the time evolution
operatorU(t),

Uij (t) = Ŭij (t)+ i
∫ t

0
dτ Ŭik(t − τ)3klŬlj (τ )ϕl(τ ) (3.16)

+ i2
∫ t

0
dτ
∫ τ

0
dτ ′ Ŭik(t−τ)3klŬlm(τ−τ ′)3mnŬnj (τ ′)ϕln(τ, τ ′)

+ · · ·
where the summation labelsk, l,m, . . . run over 0, x, y, z. The influence of the heat bath
is accounted for by the correlation functions

ϕi...j (τi, . . . , τj ) = 〈Fi (τi) · · ·Fj (τj )〉B. (3.17)

Equation (3.16) constitutes the formal solution for the time evolution of the initial
state (2.2). The subsequent perturbation theory relies on a cumulant expansion of the bath
correlations (3.17). First note that, because the operatorsFi are linear inbk and b†k, the
correlations with an odd number of arguments vanish,

0= ϕi(τi) = ϕijk(τi, τj , τk) = · · · . (3.18)

In order to put the series (3.16) in a form that permits partial re-summation, we
decompose the bath correlations of even order in terms of particular cumulants. Starting
from the second-order correlation

φij (τi, τj ) = 〈Fi (τi)Fj (τj )〉B ≡ ϕij (τi, τj ) (3.19)

we define cumulantsφi...j according to

ϕijkl = φijφkl + φijkl (3.20)

ϕijklmn = φijφklφmn + φijklφmn + φijφklmn + φijklmn (3.21)
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and so forth. Because of the time orderingτi > τj > τk > · · ·, the cumulantsφij , φijkl ,
φijklmn,. . . contain irreducible terms with 1, 2, 3,. . . phonon lines.

Insertion in (3.16) and rearranging the terms yields an integral equation for the time
evolution operator,

Uij (t) = Ŭij (t)−
∑
kl

∫ t

0
dτ
∫ τ

0
dτ ′ Ŭik(t − τ)6kl(τ − τ ′)Ulj (τ ′) (3.22)

where the self-energy is given in terms of a series

6ij (t) = 6(1)
ij (t)+6(2)

ij (t)+ · · · (3.23)

whosenth-order contribution involves the cumulant with 2n indices, φi1...i2n . We give
explicitly the first two terms

6
(1)
ij (t − t ′) =

∑
kl 3ikŬkl(t − t ′)3ljφkj (t, t

′) (3.24)

6
(2)
ij (t − t ′) = −

∑
k···q

∫ t

t ′
dτ
∫ τ

t ′
dτ ′3ikŬkl(t − τ)3lmŬmn(τ − τ ′) (3.25)

×3npŬpq(τ ′ − t ′)3qjφkmpj (t, τ, τ
′, t ′).

(The self-energy depends only on the difference(t − t ′), since the bath correlations are
invariant under translation in time, e.g.,φij (t, t ′) = φij (t + τ, t ′ + τ); this property has
already been used when writing (3.22) as a double convolution.)

We mention two general properties of the self-energy matrixΣ, which will considerably
simplify the evaluation of the perturbation series (3.23).First, from (3.17)–(3.26) it follows
that in any order6ij (t) involves a bath correlation whose first element from the right reads
Fj (0); according to the definition of the thermal average, there is no bath operator to its
right. As bothF0 andFz yield zero when acting on identity, the corresponding entries of
the self-energy vanish,

6i0(t) = 0= 6iz(t) for i = 0, x, y, z. (3.26)

(Thus6 is not symmetric; when choosing trB(· · · ρB) for the thermal average, (3.26) would
be valid for the adjoint matrix6†.)

Second, the Hamiltonian (1.2) is invariant under the canonical transformation

σz →−σz σy →−σy bk →−bk. (3.27)

As a consequence any correlation function involving an odd number of these operators
vanishes; in terms of the self-energy this condition requires

6ij (t) = 0= 6ji(t) for i = 0, x andj = y, z. (3.28)

Thus the self-energy matrix splits in two 2× 2 blocks; taking into account both (3.26) and
(3.28) we have

Σ(t) =


0 60x(t) 0 0
0 6xx(t) 0 0
0 0 6yy(t) 0
0 0 6zy(t) 0

 . (3.29)

In the following we will calculate the first two terms of the perturbation series for these
entries according to (3.24) and (3.26).
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4. Bath correlations

According to the definition of the operatorsFi , all bath correlations can be expressed in
terms of

χ(t − t ′) = 1
2〈f (t)f (t ′)− f (t ′)f (t)〉 (4.1)

ψ(t − t ′) = 1
2〈f (t)f (t ′)+ f (t ′)f (t)〉. (4.2)

After inserting (3.10) and (3.11), we find eight finite functions of second order,

φ0x(t, t
′) = φ0y(t, t

′) = φzx(t, t ′) = φzy(t, t ′) ≡ χ(t − t ′) (4.3)

φxx(t, t
′) = φxy(t, t ′) = φyy(t, t ′) = φyx(t, t ′) ≡ ψ(t − t ′). (4.4)

Since bothF0 andFz yield zero when acting on identity, the remaining terms vanish:

φi0(t) = 0= φiz(t). (4.5)

Regarding the fourth-order correlations, we use (3.20) and the well known expansion
in terms of two-times correlation functions, and thus obtain

φijkl(τi, τj , τk, τl) = φik(τi, τk)φjl(τj , τl)+ φil(τi, τl)φjk(τj , τk). (4.6)

Because of the relations (4.5), certain correlations vanish,

φijkl = 0 for k = 0, z or l = 0, z. (4.7)

Here we note explicitly those functions which will be needed later,

φxyxy(t, τ, τ
′, t ′) = φyxyx(t, τ, τ ′, t ′)
= ψ(t − t ′)ψ(τ − τ ′)+ ψ(t − τ ′)ψ(τ − t ′) (4.8)

φzxyx(t, τ, τ
′, t ′) = χ(t − t ′)ψ(τ − τ ′)+ χ(t − τ ′)ψ(τ − t ′) (4.9)

φ0zxy(t, τ, τ
′, t ′) = χ(t − t ′)χ(τ − τ ′)+ χ(t − τ ′)χ(τ − t ′). (4.10)

For further use we calculate the phonon propagators

ψ(t) =
∑
k

λ2
k(1+ 2nk) cos(ωkt) χ(t) = −i

∑
k

λ2
k sin(ωkt) (4.11)

and their Laplace transforms,

ψ(z) = −
∑
k

λ2
k(1+ 2nk)

z

z2− ω2
k

(4.12)

χ(z) = −
∑
k

λ2
k

ωk

z2− ω2
k

(4.13)

with Bose occupation numbersnk = [eβh̄ωk − 1]−1.

4.1. Pole approximation

Besides the perturbation expansion, we need to apply a Markov approximation. Since
the latter is obtained naturally in frequency space, we note the Laplace transform of the
propagator matrixU(t). Applying the convolution theorem to (3.22) and solving forU(z),
we obtain

U(z) = −1

−Ŭ(z)−1+6(z) (4.14)
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where the uncoupled spin dynamics is given by

− Ŭ(z)−1 =


z 0 0 0
0 z 0 0
0 0 z −i1b

0 0 i1b z

 . (4.15)

From the determinant

det
(
Ŭ(z)−1

) = −z2
(
z2−12

b

)
(4.16)

one finds that the uncoupled propagator exhibits a double pole atz = 0 and a pair of poles
at z = ±1b.

The entries of the self-energy matrix are smooth functions of frequency. In order to
calculate the resonance frequenciesz0 of U(z), we expand the self-energy6(z) in a power
series aboutz0,

6(z) = 6(z0)+ (z − z0)

[
d6(z)

dz

]
z=z0

+ · · · (4.17)

and we truncate after the linear term. After inserting this approximate expression in
(4.14), one finds that the determinant ofU(z)−1 is given by a fourth-order polynomial
in z. Each root of this polynomial provides a resonance, which requires an imaginary part
after evaluating the dissipative terms of6 at the corresponding frequency.

Since bothŬ and6 are block-diagonal, the full propagator may be written as

U(z) =
(
V(z) 0

0 W(z)

)
(4.18)

with 2× 2 matricesV andW, whereV acts on the subspace labelled by 0 andx, andW
on that spanned byy and z. This particular form of the propagator follows directly from
(3.6) and the invariance under the canonical transformation (3.27). Owing to the fact that
U(z) is block-diagonal, the submatricesV andW may be dealt with separately. We start
with W.

5. Phase relaxation:W(z)

The submatrixW describes tunnelling oscillations with the bare frequency1b. Phonon
coupling affects this motion in two respects. First, it results in renormalization of the tunnel
frequency and, second, it destroys the phase coherence. These two effects will be accounted
for by a reduced tunnel frequencỹ10 and a damping rate0t.

In order to properly perform the pole approximation, we insert the expansion (4.17) in
the secular equation

0= det
(−W(z)−1

) = det

(
z +6yy(z) −i1b

i1b+6zy(z) z

)
. (5.1)

First we determine the reduced tunnel frequency1̃0 by calculating the reactive part of the
self-energy. In a second step we evaluate the dissipative part of6 at the effective tunnel
frequency1̃0.
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5.1. The self-energy

After inserting the bath correlations (4.3)–(4.5), one easily finds that there is a single first-
order term,

6(1)
yy (t) = Ŭxx(t)ψ(t); (5.2)

the remaining entries vanish. SinceŬxx(t) is equal to unity, the Laplace transform of (5.2)
reads as

6(1)
yy (z) = ψ(z); (5.3)

derivation with respect to frequency gives

d

dz
6(1)
yy (z) =

∑
k

λ2
k(1+ 2nk)

ω2
k + z2

(ω2
k − z2)2

. (5.4)

Owing to the cubic phonon spectral function, the integral is dominated by high frequencies;
hence we may drop the termsz2. Then the derivative is independent of frequency,

d

dz
6(1)
yy =

∑
k

λ2
k(1+ 2nk)ω

−2
k ≡ δ1. (5.5)

Now we turn to the second-order contributions. From the selection rule (4.7), we obtain
two finite entries

6(2)
yy (t) = −

∫ t

0
dτ
∫ τ

0
dτ ′ Ŭxx(t − τ)Ŭyy(τ − τ ′)Ŭxx(τ ′)φxyxy (5.6)

6(2)
zy (t) = −

∫ t

0
dτ
∫ τ

0
dτ ′ Ŭ00(t − τ)Ŭzy(τ − τ ′)Ŭxx(τ ′)φ0zxy. (5.7)

In a diagrammatic representation, the second-order phonon correlations comprise a
part where the two phonon lines cross (‘crossing diagram’) and a part where they do not
(‘rainbow diagram’); accordingly we separate the self-energy

6(2)
yy (t) = YC(t)+ YR(t) 6(2)

zy (t) = ZC(t)+ ZR(t). (5.8)

We start with 6yy . After decomposing the cosine functions according to cos(x) =
1
2(e

ix + e−ix), the time dependence involves exponentials only. Defining

λ̃2
k = λ2

k(1+ 2nk) (5.9)

and performing the double integrals, we find the contribution arising from the rainbow
diagram

YR(t) = 1

8

∑
k,k′

λ̃2
kλ̃

2
k′
∑
{±}

[ −it e±iωkt

±ωk′ ±1b
+ ei(±ωk±ωk′±1b)t − e±iωkt

(±ωk′ ∓1b)2

]
(5.10)

and from the crossing diagram

YC(t) = 1

8

∑
k,k′

λ̃2
kλ̃

2
k′
∑
{±}

[
e±iωkt − e±iωk′ t

(±ωk′ ∓ ωk)(±ωk ±1b)
+ ei(±ωk±ωk′±1b)t − e±iωkt

(±ωk′ ∓1b)(±ωk ∓1b)

]
. (5.11)

The sums over the signs of1b, ωk, andωk′ are independent of each other and give rise to
eight terms.

Since it involves exponential functions only, the Laplace transform6(2)
yy (z) is easily

calculated. The first term in brackets in (5.10) vanishes when summing over the signs,
whereas the second one gives a finite contribution,

YR(z) = −1

8

∑
kk′{±}

λ̃2
kλ̃

2
k′

−(±ωk′ ±1b)

(z±ωk±ωk′ ±1b)(z±ωk)
1

(±ωk′ ∓1b)2
. (5.12)
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An analogous expression forYC(z) is obtained from (5.11).
At frequencies small compared withkBT/h̄, the real part is much larger than the

imaginary one. When expanding<YR(z) and<YC(z) in powers ofz, we find the linear
term prevails. A straightforward calculation gives

d

dz
<6(2)

yy (z) = P
∑
k,k′

λ̃2
kλ̃

2
k′

1

(ω2
k −12

b)(ω
2
k′ − ω2

k)
≡ δ2 (5.13)

where we have discarded insignificant corrections of the order(h̄1b/kBT ) and whereP
denotes the principal value.

Evaluation of the off-diagonal element6(2)
zy runs along the same lines. When proceeding

as forYR(t) we find

ZR(t) = − i

8

∑
k,k′

λ2
kλ

2
k′
∑
s,s ′,σ

ss ′σ
ei(sωk+s ′ωk′+σ1b)t − eisωkt

(s ′ωk′ − σ1b)2
(5.14)

where we have defined the sign variabless, s ′, σ = ±. The sine functions in the propagators
Uzy(t) andχ(t) result in the additional factorss ′σ , as compared withYR.

Because of our definition of off-diagonal matrix elements,6zy carries an additional
factor i, and thus<6zy is the dissipative part, and=6zy the reactive one. (Note the factor
i of the tunnel frequency1b in (4.15) and (5.1).) With the same approximations as above,
we find that the reactive part is small and its derivative negligible at small frequencies,

(d=6(2)
zy /dz) = 0. (5.15)

5.2. The reduced tunnel frequency

Now we are going to calculate the reduced tunnel frequency from (5.1). For frequencies
much smaller thankBT/h̄, <6yy is well approximated by its term linear inz; therefore

(z − z0)∂z <6yy(z0)+<6yy(z0) = z ∂z <6yy = z(δ1+ δ2). (5.16)

Discarding for the moment the dissipative parts of6, we have

det
(
W(z)−1

) = z2(1+ δ1+ δ2)−12
b = Z−1[z2− 1̃2

0] (5.17)

with the renormalized tunnel frequency

1̃2
0 = Z12

b (5.18)

and the reduction factor

Z = [1+ δ1+ δ2]−1. (5.19)

5.3. The damping rate

With (5.16) and when taking into account the dissipative parts of the self-energy, we obtain
the characteristic equation

det
(
W(z)−1

) = z2(1+ δ1+ δ2)−12
b+ iz0(z) (5.20)

with the dissipation kernel

0(z) = =6yy(z)+ (1b/z)<6zy(z). (5.21)

We note that0(z) is a symmetric function ofz, since=6yy(z) is symmetric and<6zy(z)
antisymmetric. Solving the quadratic equation (5.20) and evaluating the damping function
0(z) at the tunnel frequencỹ10 leads to the rate

0t = 1
2Z0(1̃0) (5.22)
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and to the effective resonance frequency

ω2
t = 1̃2

0− 1
4Z

2
[=6yy(1̃0)

]2
. (5.23)

After matrix inversion and dropping an insignificant term6zy in the residue, we find

W(z) = − 1

(z + i0t)2− ω2
t

(
Zz −iZ1b

iZ1b z + 2i0t

)
. (5.24)

Now we are going to evaluate the dissipative entries of the self-energy=6yy and<6zy.
The first-order term of the transverse rate is given by

=6(1)
yy (z) = παz3 coth(h̄z/2kBT ) (5.25)

for z real. According to (5.8), the second-order contribution6(2)
yy comprises two terms,

Y ′′R(z) =
π

8

∑
k,k′

λ̃2
kλ̃

2
k′
∑
{±}

δ(z ± ωk ± ωk′ ±1b)− δ(z ± ωk)
(±ωk′ ±1b)2

(5.26)

Y ′′C(z) =
π

8

∑
k,k′

λ̃2
kλ̃

2
k′
∑
{±}

[
δ(z ± ωk)− δ(z ± ωk′)
(±ωk′ ∓ ωk)(±ωk ±1b)

(5.27)

+ δ(z ± ωk ± ωk′ ±1b)− δ(z ± ωk)
(±ωk′ ±1b)(±ωk ±1b)

]
.

Those terms in (5.26) and (5.27) which involve a delta function of a single phonon
frequency are easily calculated, since the integrand factorizes with respect toωk andωk′ .
When keeping the leading term only, we find

π

2

∑
k,k′

λ̃2
kλ̃

2
k′δ(z − ωk)ω−2

k′ = δ1=6(1)
yy (z). (5.28)

Now we consider the contributions involving a delta function with two frequency
arguments,δ(z ± ωk ± ωk′ ± 1b). After inserting the spectral density (1.4) and removing
one frequency integration by means of the delta function, we expand the integral in powers
of the small quantitiesz and1b. Note that this expansion involves the temperature factors
coth(h̄ωk/2kBT ), the spectral functionJ (ω), and the factors given explicitly in (5.27). (We
note the derivative∂x coth(x) = − sinh(x)−2.) The first two terms of this power series
cancel; after calculating the quadratic term and using (5.28), we have

=6(2)
yy (z) = δ1=6(1)

yy (z)+ z22πα2
∫ ωD

0
dωω2 coth(βh̄ω/2)2 (5.29)

+(z2−12
b)2πα

2
∫ ωD

0
dωω2 coth(βh̄ω/2)

sinh(βh̄ω/2)2
.

Evaluation of the off-diagonal entry<6zy runs along the same lines. When expanding
in powers ofz and1b, we find after some algebra the quadratic term

<6(2)
zy (z) = −2πα2z1b

∫ ωD

0
dωω2. (5.30)

Finally we calculate the damping function0(1̃0) according to (5.22). For this purpose
we evaluate the self-energy (5.25), (5.29), (5.30) at the reduced tunnel frequency1̃0. In
order to obtain meaningful results, we retain only those contributions to0(1̃0) that are
linear or quadratic in the coupling parameterα̃. Thus we find from (5.25)

=6(1)
yy (1̃0) = 2πα12

b(kBT/h̄) [1− δ1] +O(α3). (5.31)
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The second-order term (5.29) is already quadratic inα. Hence the corrections arising
from its argument1̃0 are to be discarded; accordingly we putz = 1b. Then the first term
in (5.29) cancels the correction proportional toδ1 in (5.31), and the third term on the r.h.s.
of (5.29) disappears. In view of (5.21) we combine the second term of (5.29) with (5.30);
for kBT � h̄ωD we may replace the upper bound of the resulting integral by infinity and
thus obtain ∫ ∞

0
dωω2[coth(h̄ω/2kBT )

2− 1] = (2kBT/h̄)
3π

2

6
. (5.32)

Rearranging the remaining terms and using (1.5), we find

0(1̃0) = 2πα12
b(kBT/h̄)

[
1+ 4

3π
2α̃T 2+O(α̃2T 4)

]
. (5.33)

6. Energy relaxation: V(z)

For zero phonon coupling,V has two undamped poles at zero frequency. When expanding
6xx and60x aboutz0 = 0 and inverting the 2× 2 matrix, it acquires one damped pole,

V(z) = −1

z[z(1+6′xx)+6xx ]

(
z(1+6′xx)+6xx −60x−z6′0x

0 z

)
. (6.1)

(We use the shorthand notation for the derivative6′ = (d6/dz).)

6.1. The self-energy6xx

When taking into account (4.5), we easily we find from (3.24) the finite first-order terms

6
(1)
0x (t) = iŬzy(t)χ(t) (6.2)

6(1)
xx (t) = Ŭyy(t)ψ(t). (6.3)

Since these entries are products of the uncoupled spin propagatorŬ(t) and the phonon
propagatorsχ(t) andψ(t), their Laplace transforms are given as convolutions, e.g.,

6(1)
xx (z) = −

1

2π i

∫
dz′ Ŭyy(z′)ψ(z − z′). (6.4)

After closing the integration contour at infinity, we obtain

6(1)
xx (z) = 1

2

[
ψ(z −1b)+ ψ(z +1b)

]
(6.5)

6
(1)
0x (z) = 1

2

[
χ(z −1b)− χ(z +1b)

]
. (6.6)

At zero frequency both functions are purely imaginary,

6
(1)
0x (0) = i

π

2

∑
k

λ2
kδ(ωk −1b) ≡ iγ0 (6.7)

6(1)
xx (0) = iγ0 coth(h̄1b/2kBT ) (6.8)

whereas their derivatives atz = 0 are real. ForkBT � h̄1b, the derivatives with respect to
z are dominated by thermal phonon frequenciesωk � 1b. Thus we may drop the tunnel
frequency in the denominator, and we find with (5.4)

(d6(1)
xx /dz) = δ1 (d6(1)

0x /dz)� δ1; (6.9)

accordingly we drop(d6(1)
0x /dz) and keep(d6(1)

xx /dz) only.
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We will not derive the second-order contributions in detail, but merely note two
particular features. First, the derivative of the real part is equal to that of6(2)

yy ,

(d6(2)
xx /dz)|z=0 = δ2. (6.10)

This is not surprising, since both6(2)
yy (t) and6(2)

yy (t) involve the same phonon correlation,
and the spin propagator is of little significance for the derivatives. Thus we have with (6.9),
(6.10) and (5.23)

1+ ∂z6xx = Z−1. (6.11)

A second remark concerns the dissipative part=6(2)
xx (z). A detailed calculation shows that

there is no proper second-order contribution like (5.32); one rather finds a renormalization
of the first-order term,=6(2)

xx (z) = δ1=6(1)
xx (z), similar to the first term in (5.29).

The following discussion of the relaxation part of the propagatorU will be restricted to
the first order with respect to the coupling parameterα.

6.2. The relaxation rate

Because of (6.9) we may discard∂z60x in (6.1). Using (6.7), (6.11) and the rate

0l = Z6xx(z = 0) (6.12)

and separating the two poles, we obtain for (6.1)

V(z) = −1

z

(
1 −Zγ0/0l

0 0

)
− 1

z + i0l

(
0 Zγ0/0l

0 Z

)
. (6.13)

7. Time propagation

7.1. Damped oscillations

The propagatorU(t) results from Laplace back-transformation of bothV(z) andW(z). With
(2.4) we find the transverse spin polarization (2.6) to be given by the lower diagonal element
of U(t),

P(t) = Uzz(t). (7.1)

Upon Laplace back-transformation of (5.24) we find

Uzz(t) = e−0tt cos(ωtt + δ)/ cos(δ) (7.2)

with tan(δ) = 0t/ωt.

7.2. Relaxation to the stationary state

From (6.13) we obtain the time evolution in the subspace spanned byσ0 andσx ,

V(t) =
(

1 −Zγ0/0l

0 0

)
+ e−0l t

(
0 Zγ0/0l

0 Z

)
. (7.3)

Note thatV(t) is equal to identity att = 0; in the long-time limitt →∞ the second term
in (7.3) disappears.

Inserting the phonon spectral density, we find the rates

0l = Zπα13
b coth(h̄1b/2kBT ) γ0 = πα13

b. (7.4)

With (2.6) and the average (2.3) we findR(t) = U0x(t) and, after inserting (7.3),

R(t) = tanh(h̄1b/2kBT )[1− e−0l t ]. (7.5)
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The spin polarization in thermal equilibrium,〈σx〉eq, is given by the long-time limit

〈σx〉eq= lim
t→∞R(t) = tanh(h̄1b/2kBT ). (7.6)

Finally we note the statistical operator in thermal equilibrium

ρ
eq
S = 1

2[σ0− tanh(h̄1b/2kBT )σx ]. (7.7)

7.3. Temperature dependence

Here we evaluate the reduced tunnel frequency and the rates, the main issue being the
variation with temperature. We start with the factorZ = (1+ δ1 + δ2)

−1. When inserting
the spectral density in (6.9), we obtain

δ1 = α̃22+ 2
3π

2α̃T 2. (7.8)

The second termδ2 involves more complicated integrals, which cannot be performed
analytically. Since we will consider lowest-order corrections to the one-phonon rate only,
we will not needδ2.

Noting δn ∝ α̃n, we find that an expansion of the reduced tunnel frequency in terms of
δ1 andδ2,

1̃2
0 = Z12

b = 12
b[1− δ1− δ2+ 1

2δ
2
1 + · · ·] (7.9)

constitutes a series in powers of the coupling parameterα̃. According to the definitions of
δ1 and δ2, the renormalization of the tunnel frequency involves both a static part in terms
of α̃22 and a temperature-dependent one in powers ofα̃T 2. The above expressions forδ1

andδ2 are valid forT � 2 only.
In the limit of vanishing coupling the factorZ is unity; the rates are given by the

first-order terms and fulfil the well known relation

0l = 20t = πα13
b coth(h̄1b/2kBT ) for δ2� δ1� 1. (7.10)

Yet this law does not hold true for higher-order contributions. The terms of higher order in
α̃ are relevant at higher temperatureskBT � h̄1b, where we may replace the coth function
by its inverse argument. As mentioned above without derivation, the second-order terms of
the longitudinal rate vanish.

The transverse damping rate0t describes the loss of phase memory of the tunnelling
oscillations. When inserting (5.33) and the definition of the reduced tunnel frequency1̃0

in (5.22), we obtain

0t = πα1̃2
0(kBT/h̄)

[
1+ 4

3π
2α̃T 2+O(α̃2T 4)

]
. (7.11)

Yet the rate0t involves the reduced tunnel frequencỹ10 = 1̃0(T ) which depends on
temperature through the factorZ. Inserting (7.9) and expanding the tunnel frequency in
terms ofα̃T 2 about its zero-temperature value,10 = 1̃0(T = 0), we find

0t = πα12
0(kBT/h̄)

[
1+ 2

3π
2α̃T 2+O(α̃2T 4)

]
. (7.12)

(To lowest order we have12
0 = 12

b[1 − α̃22].) As a consequence of the temperature
dependence of̃10, the linear and quadratic terms in brackets differ by a factor4

3π
2α̃T 2 in

(7.11) and by2
3π

2α̃T 2 in (7.12). These expressions for the transverse rate constitute a main
result of this paper.
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8. Discussion

8.1. Validity of the perturbation expansion

From the above results it is clear that truncation of the perturbation series at first or second
order yields proper results as long as the quantitiesδ1 andδ2 are much smaller than unity;
in terms of temperatureT , Debye temperature2, and coupling constant̃α, this condition
reads

α̃T 2� 1 α̃22� 1. (8.1)

Thus the perturbative regime is characterized by weak coupling and low temperature. The
opposite case requires a strong-coupling approach as discussed in [21, 22].

As is clear from (7.12), the quantitỹαT 2 is the most relevant small parameter for the
perturbation expansion. Violation of the second inequality,α̃22 > 1, is a less serious
problem, since formally the corresponding reduction factor may be absorbed in the zero-
temperature tunnel frequency10.

From the form of the perturbation series one expects that higher-order corrections to
the rate involve factors(α̃T 2)n with n = 2, 3, . . .. Thus it might seem that the expansion
(7.12) is of little practical use, since terms of any order become important as soon asα̃T 2

approaches unity.
Yet (7.11) and (7.12) constitute the only rigorous result for the damping rate beyond

the first-order term available up to now. They provide a thorough criterion for the validity
of any strong-coupling theory. In the remainder of this section, we compare our findings
with those from previous approaches.

8.2. Comparison to previous work

Except for the mode-coupling approximation in [20], most works on the spin-boson model
start from a small-polaron type formulation for the Hamiltonian (1.2) [10, 16, 21, 22].
Here we discuss their results for the transverse rate in view of (7.11). Since the rate is
usually written in terms of a temperature-dependent tunnel frequency whose lowest-order
corrections are identical to those of our1̃0, we use (7.11) rather than (7.12).

In the framework of a functional-integral formulation forP(t), Leggett et al have
evaluated the two-state dynamics in terms of thenon-interacting blip approximation(NIBA).
For the cubic bath spectral density (1.5), their rate, (6.36) of [10], reads in our notation as
(π/2)α1̃3

0 coth(h̄1̃0/2kBT ). From the absence of higher-order terms these authors conclude
that the coupling to phonons does not lead to overdamped, or incoherent, motion of the
two-state system. It turns out, however, that the result of [10] has been derived with an
additional approximation which, in terms of (7.11), amounts to neglecting the corrections in
brackets. Clearly, this approximation is valid at low temperatures,α̃T 2 � 1, but it breaks
down for α̃T 2 approaching unity.

Pirc and Gosar have developed a diagrammatic perturbation theory for the spin-boson
model [16]. Their rate contains higher-order terms, but of odd order only, i.e., it fails in
view of the quadratic contribution to (7.11).

Starting from the equation of motion for the pseudo-spin operators in the small-polaron
picture, the present author has evaluated the transverse rate in NIBA and calculated lowest-
order corrections (cf. [21] or chapter 8 of [8]). The transverse rate increases exponentially
with temperature for̃αT 2 � 1. The result in NIBA, Eq. (27) of [21], gives one half of
the second-order term in (7.11). Yet when taking into account the corrections to NIBA, the
second-order term of (34) of [21] agrees with the exact result (7.11).
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Finally we compare (7.11) with the rate obtained from a mode-coupling approximation
(MCA), which reads in our notationπα1̃2

0(kBT/h̄)+π5α2(kBT/h̄)
5 for α̃T 2� 1; cf. (3.32)

of [20]. The discrepancy with respect to the correction term in (7.11) may be understood by
noting that MCA corresponds to retaining in the perturbation series non-crossing diagrams
only. When dropping the crossing part of (5.8), and evaluating the rainbow diagram (5.12),
the present perturbation theory yields, up to an insignificant numerical constant, the result
from MCA. Yet the subtle cancellation of the leading terms of crossing and rainbow diagrams
leads us to the conclusion that MCA does not provide an appropriate approximation scheme
for the spin-boson model.

9. Summary and conclusion

We have applied a perturbation expansion in terms of the Liouville operator to the self-energy
matrix of the pseudo-spin propagator. Although formally very similar to the strong-coupling
theory of [22], the present approach requires different approximations and, accordingly,
yields complementary results. Its basic feature consists in a systematic expansion of the
self-energy in powers of the coupling parameterα̃.

The transverse damping rate (7.11) constitutes the main results of this paper. In terms
of the coupling parameter̃α, it shows a positive second-order contribution. This rigorous
result settles the question of the existence of higher-order contributions to the damping rate.
Thereby, it invalidates various previous statements on that issue and, in particular, the claim
of [10] that a phonon heat bath would not drive a cross-over to incoherent tunnelling.

Together with a recent small-polaron approach [8, 21], the correction factor in (7.11)
permits us to conclude on the validity of the high-temperature rate obtained there. The factor
4
3π

2α̃T 2 in (7.11) proves that NIBA is not a controlled approximation for the cubic bath
spectral density. On the other hand, our result confirms the rate which has been obtained
previously by calculating lowest-order corrections to NIBA [21]. Regarding the strong-
coupling theory of [22], we find that it gives the correct linear and quadratic contributions
to the rate. In view of the present findings, that approach provides the most suitable treatment
for the spin-phonon model in the temperature range where multi-phonon contributions are
not negligible.
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